尋夢新聞LINE@每日推播熱門推薦文章,趣聞不漏接❤️
古人雲:失敗乃成功之母!
這句說的是有道理的~
成功!無非就是兩步路
開始和堅持
然後倒在這倆步路上的人實在是太多太多了~
好了,不說閒話了,回歸正題吧!
入門」是良好的動機,但是可能作用緩慢。如果你手里或者腦子里有一個項目,那麼實踐起來你會被目標驅動,而不會像學習模塊一樣慢慢學習。
另外如果說知識體系里的每一個知識點是圖里的點,依賴關係是邊的話,那麼這個圖一定不是一個有向無環圖。因為學習A的經驗可以幫助你學習B。因此,你不需要學習怎麼樣「入門」,因為這樣的「入門」點根本不存在!你需要學習的是怎麼樣做一個比較大的東西,在這個過程中,你會很快地學會需要學會的東西的。當然,你可以爭論說需要先懂python,不然怎麼學會python做爬蟲呢?但是事實上,你完全可以在做這個爬蟲的過程中學習python 😀
看到前面很多答案都講的「術」——用什麼軟件怎麼爬,那我就講講「道」和「術」吧——爬蟲怎麼工作以及怎麼在python做到。
先長話短說summarize一下:
你需要學習
- 基本的爬蟲工作原理
- 基本的http抓取工具,scrapy
- Bloom Filter: Bloom Filters by Example
- 如果需要大規模網頁抓取,你需要學習分布式爬蟲的概念。其實沒那麼玄乎,你只要學會怎樣維護一個所有集群機器能夠有效分享的分布式隊列就好。最簡單的做到是python-rq: https://github.com/nvie/rq
- rq和Scrapy的結合:darkrho/scrapy-redis · GitHub
- 後續處理,網頁析取(grangier/python-goose · GitHub),存儲(Mongodb)
插要:關注!轉PO!私信小編【01】即可獲取python入門20天完整學習筆記和100道基礎練習題及答案以及入門書籍視頻源碼等資料。
以下是短話長說:
說說當初寫的一個集群爬下整個豆瓣的經驗吧。
1)首先你要明白爬蟲怎樣工作。
想像你是一只蜘蛛,現在你被放到了互聯「網」上。那麼,你需要把所有的網頁都看一遍。怎麼辦呢?沒問題呀,你就隨便從某個地方開始,比如說人民日報的首頁,這個叫initial pages,用$表示吧。
在人民日報的首頁,你看到那個頁面引向的各種鏈接。於是你很開心地從爬到了「國內新聞」那個頁面。太好了,這樣你就已經爬完了倆頁面(首頁和國內新聞)!暫且不用管爬下來的頁面怎麼處理的,你就想像你把這個頁面完完整整抄成了個html放到了你身上。
突然你發現, 在國內新聞這個頁面上,有一個鏈接鏈回「首頁」。作為一只聰明的蜘蛛,你肯定知道你不用爬回去的吧,因為你已經看過了啊。所以,你需要用你的腦子,存下你已經看過的頁面地址。這樣,每次看到一個可能需要爬的新鏈接,你就先查查你腦子里是不是已經去過這個頁面地址。如果去過,那就別去了。
好的,理論上如果所有的頁面可以從initial page達到的話,那麼可以證明你一定可以爬完所有的網頁。
那麼在python里怎麼做到呢?
很簡單
import Queue initial_page = "http://www.renminribao.com" url_queue = Queue.Queue() seen = set() seen.insert(initial_page) url_queue.put(initial_page) while(True): #一直進行直到海枯石爛 if url_queue.size()>0: current_url = url_queue.get() #拿出隊例中第一個的url store(current_url) #把這個url代表的網頁存儲好 for next_url in extract_urls(current_url): #提取把這個url里鏈向的url if next_url not in seen: seen.put(next_url) url_queue.put(next_url) else: break
寫得已經很偽代碼了。
所有的爬蟲的backbone都在這里,下面分析一下為什麼爬蟲事實上是個非常複雜的東西——搜尋引擎公司通常有一整個團隊來維護和開發。
2)效率
如果你直接加工一下上面的代碼直接運行的話,你需要一整年才能爬下整個豆瓣的內容。更別說Google這樣的搜尋引擎需要爬下全網的內容了。
問題出在哪呢?需要爬的網頁實在太多太多了,而上面的代碼太慢太慢了。設想全網有N個網站,那麼分析一下判重的複雜度就是N*log(N),因為所有網頁要遍歷一次,而每次判重用set的話需要log(N)的複雜度。OK,OK,我知道python的set做到是hash——不過這樣還是太慢了,至少內存使用效率不高。
通常的判重做法是怎樣呢?Bloom Filter. 簡單講它仍然是一種hash的方法,但是它的特點是,它可以使用固定的內存(不隨url的數量而增長)以O(1)的效率判定url是否已經在set中。可惜天下沒有白吃的午餐,它的唯一問題在於,如果這個url不在set中,BF可以100%確定這個url沒有看過。但是如果這個url在set中,它會告訴你:這個url應該已經出現過,不過我有2%的不確定性。注意這里的不確定性在你分配的內存足夠大的時候,可以變得很小很少。一個簡單的教程:Bloom Filters by Example
注意到這個特點,url如果被看過,那麼可能以小概率重復看一看(沒關係,多看看不會累死)。但是如果沒被看過,一定會被看一下(這個很重要,不然我們就要漏掉一些網頁了!)。 [IMPORTANT: 此段有問題,請暫時略過]
好,現在已經接近處理判重最快的方法了。另外一個瓶頸——你只有一台機器。不管你的帶寬有多大,只要你的機器下載網頁的速度是瓶頸的話,那麼你只有加快這個速度。用一台機子不夠的話——用很多台吧!當然,我們假設每台機子都已經進了最大的效率——使用多線程(python的話,多進程吧)。
3)集群化抓取
爬取豆瓣的時候,我總共用了100多台機器晝夜不停地運行了一個月。想像如果只用一台機子你就得運行100個月了…
那麼,假設你現在有100台機器可以用,怎麼用python做到一個分布式的爬取算法呢?
我們把這100台中的99台運算能力較小的機器叫作slave,另外一台較大的機器叫作master,那麼回顧上面代碼中的url_queue,如果我們能把這個queue放到這台master機器上,所有的slave都可以通過網路跟master聯通,每當一個slave完成下載一個網頁,就向master請求一個新的網頁來抓取。而每次slave新抓到一個網頁,就把這個網頁上所有的鏈接送到master的queue里去。同樣,bloom filter也放到master上,但是現在master只發送確定沒有被訪問過的url給slave。Bloom Filter放到master的內存里,而被訪問過的url放到運行在master上的Redis里,這樣保證所有操作都是O(1)。(至少平攤是O(1),Redis的訪問效率見:LINSERT – Redis)
考慮如何用python做到:
在各台slave上裝好scrapy,那麼各台機子就變成了一台有抓取能力的slave,在master上裝好Redis和rq用作分布式隊列。
代碼於是寫成
#slave.py current_url = request_from_master() to_send = [] for next_url in extract_urls(current_url): to_send.append(next_url) store(current_url); send_to_master(to_send) #master.py distributed_queue = DistributedQueue() bf = BloomFilter() initial_pages = "www.renmingribao.com" while(True): if request == 'GET': if distributed_queue.size()>0: send(distributed_queue.get()) else: break elif request == 'POST': bf.put(request.url)
好的,其實你能想到,有人已經給你寫好了你需要的:darkrho/scrapy-redis · GitHub
4)展望及後處理
雖然上面用很多「簡單」,但是真正要做到一個商業規模可用的爬蟲並不是一件容易的事。上面的代碼用來爬一個整體的網站幾乎沒有太大的問題。
但是如果附加上你需要這些後續處理,比如
- 有效地存儲(數據庫應該怎樣安排)
- 有效地判重(這里指網頁判重,咱可不想把人民日報和抄襲它的大民日報都爬一遍)
- 有效地信息抽取(比如怎麼樣抽取出網頁上所有的地址抽取出來,「朝陽區奮進路中華道」),搜尋引擎通常不需要存儲所有的信息,比如圖片我存來幹嘛…
- 及時更新(預測這個網頁多久會更新一次)
如你所想,這里每一個點都可以供很多研究者十數年的研究。雖然如此,
「路漫漫其修遠兮,吾將上下而求索」。
所以,不要問怎麼入門,直接上路就好了:)
如果學會了python的基本語法,我認為入門爬蟲是很容易的。
我寫的第一個爬蟲大概只需要10分鐘,自學的 scrapyd , 看官方文檔花了20分鐘,
因為我英文不是很好,很多單詞需要搜尋一下。
官方文檔鏈接 https://docs.scrapy.org/en/latest/intro/tutorial.html )
(scrapy 並不是入門必須的,所以你可以看完我的答案再酌情考慮 scrapy )
再接觸到了 requests , lxml ,配合基本庫 urllib, urllib2 就幾乎無所不能了。
後來有人推薦我用 BeatufulSoup 之類的庫,但其實原理都差不多。
一、入門爬蟲的乾貨
0. 爬蟲的基本思路
a. 通過URL或者文件獲取網頁,
b. 分析要爬取的目標內容所在的位置
c. 用元素選擇器快速提取(Raw) 目標內容
d. 處理提取出來的目標內容 ( 通常整理合成一個 Json)
e. 存儲處理好的目標內容 (比如放到 MongoDB 之類的數據庫,或者寫進文件里。)
1. 為什麼我入門爬蟲那麼快,我是不是在裝逼?
答:我自己總結了一下,在接觸爬蟲之前:
a. 我挺了解HTTP 協議(看了《HTTP權威指南》),
b. 我寫過基於Flask框架的後端(大概三年前@蕭井陌 在知乎上推薦Flask框架,然後我就自學了,用的是《Flask Web開發:基於Python的Web應用開發實戰 》)
c. 我寫過前端(HTML+CSS+JS),了解什麼是DOM ,會一點jquery。
d. 正則也是勉強夠用的。
e. 本人大學也是計算機專業,學習挺認真的。
f. 所以算是厚積薄發。
2. 那麼毫無專業基礎,也沒有前後端基礎的人應該怎麼辦?
答:那當然要超過半小時啦。先花點時間去大概了解以下內容:
a. HTTP協議的請求方法,請求頭部,請求數據
b. 大概了解一下什麼是 cookie
c. 學一點HTML和元素選擇器
d. 學會使用Chrome 的 開發者工具
磨刀不誤砍柴工,當然如果有人帶著,這些大概1-2小時就能過到能湊合用的程度了。如果沒人帶,就上網搜尋學習一下,也很快的,估摸最多十小時。
3. 放一個新鮮出爐的代碼,看懂就能入門了:
4. Python 爬蟲常用的庫是哪些?入門應該掌握哪些庫?
答:網上有很多相關的資料,但是我個人覺得新入門的人,不需要也不應該一下子接觸所有的庫。正如幼兒剛開始學說話的時候,不應該同時教普通話粵語閩南語英語。
我個人認為,學會 requests 和 lxml ,就可以入門爬蟲了。
其他的常用庫,自己搜,但注意貪多嚼不爛。 (我整理出來的被小馬甲人噴了,我很不開心,所以我自己存好刪了)
二、一點點涉及爬蟲進階的分界線
0. 知乎上很多爬蟲代碼,一個函數幾十行,是很不好的。應該盡量減少重復代碼。
1. 重要的事情說三次,
函數不是越長越好, 好代碼應該簡單易懂好維護!
函數不是越長越好, 好代碼應該簡單易懂好維護!
函數不是越長越好, 好代碼應該簡單易懂好維護!
(放在進階是因為能做到這一點的爬蟲代碼不多,很多都一團亂麻,坑死接盤俠)
2. Scrapy + MongoDB + Redis 分布式爬蟲系統其實不複雜。
a). Redis 用來存儲要爬取的網頁隊列,也就是任務隊列
b). MongoDB 用來存儲爬取的內容結果。
c) . Scrapy 里放爬蟲crawler , 分別爬取不同的網頁內容,
ps:分布式這個東西,聽起來很恐怖,但是拆開了也就這樣。所以不用害怕。
曾經在某創業公司被趕鴨子上架(我最初是一個後端工程師,現在成分有點複雜,一言難盡),要在一星期內跟一個分布式爬取各大網商(包括淘寶天貓京東等十幾家網商,Scrapy + MongoDB + Redis)的數據。
當時差點嚇壞我了,因為沒寫過爬蟲。
然後leader 給我的線索只有 基本框架是 Scrapy。
也許是無知者無畏, 也沒想到去問誰,就自己看了 Scrapy 的文檔,半小時就寫出來了。
後來就很順利把分布式爬蟲系統搭起來了。
還爬了Google、百度、Bing、 Pinterest 、Instagram 等大量和當時公司業務相關的數據。
就這樣,我做到了。
當然,加了不少班。
ps: 用很多的機器,代表需要爬取的爬取的數據量很多,但是和項目的複雜程度不一定相關。所以不要害怕。害怕也沒用,需求來了,一邊顫抖一邊加班也要寫完代碼的。
pps: 你們要復制黏貼就能跑的代碼
# -*- coding: utf-8 -*- import os import requests from lxml import html headers = { 'Host': 'www.zhihu.com', 'Accept-Language': 'zh-CN,zh;q=0.8,en;q=0.6', # 2017.12 經網友提醒,知乎更新後啟用了網頁壓縮,所以不能再採用該壓縮頭部 # !!!注意, 請求頭部里使用gzip, 響應的網頁內容不一定被壓縮,這得看目標網站是否壓縮網頁 # 'Accept-Encoding': 'gzip, deflate, sdch, br', 'Connection': 'keep-alive', 'Pragma': 'no-cache', 'Cache-Control': 'no-cache', 'Upgrade-Insecure-Requests': '1', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_4) ' 'AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.133 Safari/537.36', } def save(text, filename='temp', path='download'): fpath = os.path.join(path, filename) with open(fpath, 'w') as f: print('output:', fpath) f.write(text) def save_image(image_url): resp = requests.get(image_url) page = resp.content filename = image_url.split('zhimg.com/')[-1] save(page, filename) def crawl(url): resp = requests.get(url, headers=headers) page = resp.content root = html.fromstring(page) image_urls = root.xpath('//img[@data-original]/@data-original') for image_url in image_urls: save_image(image_url) if __name__ == '__main__': # 注意在運行之前,先確保該文件的同路徑下存在一個download的文件夾, 用於存放爬蟲下載的圖片 url = 'https://www.zhihu.com/question/27364360' # 有一雙美腿是一種怎樣的體驗? crawl(url)